 Part 1. Introduction to MM4XL
 Part 2. MM4XL Tools
 1. Strategic Tools
 BCG Matrix
 Brand Mapping
 Brand Switch
 Decision Tree
 Forecast Manager
 McKinsey Matrix
 Profile Manager
 Quality Manager
 Risk Analyst
 Risk Analyst Expert in a Few Minutes
 Introduction to Decision Analysis
 Introducing Risk Analyst with an example
 1. How to run Risk Analyst
 2. Simulation Never heard of it
 3. Examples
 4. Functions
 1. Property Functions
 2. Utility Functions
 3. Distribution Functions
 mmBETA (Scale, Shape)
 mmBETAGEN (Scale, Shape, [Optional: Lower], [Optional: Upper])
 mmBINOMIAL (Trials, Successes)
 mmCHI2 (Degrees)
 mmDISCRETE (InputRange, Probabilities)
 mmERF (Mean)
 mmERLANG (Scale, Shape)
 mmEXPON (Mean)
 mmEXTVAL (ModalValue, StDeviation)
 mmGAMMA (Scale, Shape)
 mmGAUSSINV (Mean, Scale)
 mmGEO (Trials)
 mmHYPERGEO (Sample, Defects, BatchSize)
 mmINTUNI (Lower, Upper)
 mmLOGISTIC (Mean, StDeviation)
 mmLOGNORMAL (Mean, StDeviation)
 mmNEGBIN (Failures, Successes)
 mmNORMAL (Mean, StDeviation)
 mmPARETO (Location, ModalValue)
 mmPARETO2 (Location, ModalValue)
 mmPERT (Lower, ModalValue, Upper)
 mmPOISSON (Mean)
 mmRANDBETWEEN (Lower, Upper)
 mmRAYLEIGH (ModalValue)
 mmSTUDENT (Degrees)
 mmTRI (Lower, ModalValue, Upper)
 mmUNIFORM (Lower, Upper)
 mmWEIBULL (Life, Shape)
 Probability functions
 Technicalities
 Sources
 2. Analytical Tools
 Business Formulas
 mmBASS, Bass Diffusion Model
 mmBEI, Brand Equity Index
 mmBEP, BreakEven Point
 mmBEPR, BreakEven Point with Fixed Rate of Return
 mmBUYRATE, Purchase Rate Model
 mmCAGR, Compound Annual Growth
 mmCHIp, Chi Squared Test
 mmCODING, Coding of variables
 1. Customer Satisfaction
 2. Database Functions
 mmDHMS, Number to Time
 mmEI, Evolution Index
 mmEXPECT, Expected values
 3. Forecast Errors
 mmGROWTH
 mmGROWTHBACK
 mmGRP, Gross Rating Points
 mmHERF, Herfindahl Index
 mmINTERPOLE, Linear Interpolation
 mmLEARN, Learning Curve
 mmMSAR, Market Share to Advertising Ratio
 4. Opportunity Index
 5. Performance Ranking
 6. Project Management
 mmPREMIUM, Price Premium
 mmPRESS, Product Performance Index
 7. Price Indexes
 8. Queuing Theory
 mmRANGE
 mmREBUY, Repeat Purchase Rate
 mmREBUYS, Estimated Number of RePurchases
 mmRELATIVE
 mmSAMPLE, Sample Size
 mmSAMPLEMIN, Minimum Sample for Significant Values
 mmSEASON, Seasonality Indexes
 mmSHARE
 mmSIGNIF, Significance Test
 mmVARc, Coefficient of Variation
 Cluster Analysis
 CrossTab
 Descriptive Analyst
 Gravitation Analysis
 Proportion Analyst
 Sample Manager
 Segmentation Tree
 Variation Analyst
 3. Charts and Maps
 mytest
 Version MM4XL
 contribute
 copytest
 css
 emails
 excel market analysis software
 finance
 download dbx
 download eu
 download manual
 download na
 download removed
 finance dbx
 finance eu
 finance manual
 finance na
 finance removed
 NO TITLE
 NO TITLE
 help
 Part 1. Introduction to MM4XL
 Part 2. MM4XL Tools
 1. Strategic Tools
 BCG Matrix
 Brand Mapping
 Brand Switch
 Decision Tree
 Forecast Manager
 McKinsey Matrix
 Profile Manager
 Quality Manager
 Risk Analyst
 1. How to run Risk Analyst
 2. Simulation Never heard of it
 3. Examples
 4. Functions
 1. Property Functions
 2. Utility Functions
 3. Distribution Functions
 mmBETA (Scale, Shape)
 mmBETAGEN (Scale, Shape, [Optional: Lower], [Optional: Upper])
 mmBINOMIAL (Trials, Successes)
 mmCHI2 (Degrees)
 mmDISCRETE (InputRange, Probabilities)
 mmERF (Mean)
 mmERLANG (Scale, Shape)
 mmEXPON (Mean)
 mmEXTVAL (ModalValue, StDeviation)
 mmGAMMA (Scale, Shape)
 mmGAUSSINV (Mean, Scale)
 mmGEO (Trials)
 mmHYPERGEO (Sample, Defects, BatchSize)
 mmINTUNI (Lower, Upper)
 mmLOGISTIC (Mean, StDeviation)
 mmLOGNORMAL (Mean, StDeviation)
 mmNEGBIN (Failures, Successes)
 mmNORMAL (Mean, StDeviation)
 mmPARETO (Location, ModalValue)
 mmPARETO2 (Location, ModalValue)
 mmPERT (Lower, ModalValue, Upper)
 mmPOISSON (Mean)
 mmRANDBETWEEN (Lower, Upper)
 mmRAYLEIGH (ModalValue)
 mmSTUDENT (Degrees)
 mmTRI (Lower, ModalValue, Upper)
 mmUNIFORM (Lower, Upper)
 mmWEIBULL (Life, Shape)
 Probability functions
 Risk Analyst Expert in a Few Minutes
 Introduction to Decision Analysis
 Introducing Risk Analyst with an example
 Technicalities
 Sources
 2. Analytical Tools
 Business Formulas
 1. Customer Satisfaction
 2. Database Functions
 3. Forecast Errors
 4. Opportunity Index
 5. Performance Ranking
 6. Project Management
 7. Price Indexes
 8. Queuing Theory
 mmBASS, Bass Diffusion Model
 mmBEI, Brand Equity Index
 mmBEP, BreakEven Point
 mmBEPR, BreakEven Point with Fixed Rate of Return
 mmBUYRATE, Purchase Rate Model
 mmCAGR, Compound Annual Growth
 mmCHIp, Chi Squared Test
 mmCODING, Coding of variables
 mmDHMS, Number to Time
 mmEI, Evolution Index
 mmEXPECT, Expected values
 mmGROWTH
 mmGROWTHBACK
 mmGRP, Gross Rating Points
 mmHERF, Herfindahl Index
 mmINTERPOLE, Linear Interpolation
 mmLEARN, Learning Curve
 mmMSAR, Market Share to Advertising Ratio
 mmPREMIUM, Price Premium
 mmPRESS, Product Performance Index
 mmRANGE
 mmREBUY, Repeat Purchase Rate
 mmREBUYS, Estimated Number of RePurchases
 mmRELATIVE
 mmSAMPLE, Sample Size
 mmSAMPLEMIN, Minimum Sample for Significant Values
 mmSEASON, Seasonality Indexes
 mmSHARE
 mmSIGNIF, Significance Test
 mmVARc, Coefficient of Variation
 Cluster Analysis
 CrossTab
 Descriptive Analyst
 Gravitation Analysis
 Proportion Analyst
 Sample Manager
 Segmentation Tree
 Variation Analyst
 3. Charts and Maps
 images
 img
 Test pages
 js
 licenses
 lightbox
 logs
 marketing resources
 picture_library
 plesk stat
 press release
 res
 brochures
 copytest
 icons
 links
 proudly_serve
 seminars
 tabs
 tools
 test
 apacheasp
 cgi
 coldfusion
 fcgi
 miva
 perl
 php
 python
 ssi
 treeview_img
 weyou


Part 2. MM4XL Tools > 1. Strategic Tools > Profile Manager > 1. Anatomy of a Profile Manager Report > Input Data
Profile Manager Input Data We begin by taking a look at the input data required for running the analysis. The table below shows the input data to Profile Manager. It is made of three parts:  variable labels (cells A3:A10)
 input data (cells B2:E10)
 the marketing response vector (F2:F10)
The first two parts, labels and data, make up the profile(s) and they can be gathered in a variety of ways, ranging from sample surveys to desk research and competitive intelligence. The third part, the marketing response vector, is again the result of a survey or of educated guessing. Educated guessing is often done at the early stage of concept development, for instance for a new product launch or just a new product feature. One can simply list his or her best guesses about the relative importance of each of the items in the profile, and run several scenarios to compare. However we suggest caution in running this. The profiles above are expressed on eight variables (rows), most of which have a different scale of measurement from the others. If you check the option bRescale datab in the tool window, Profile Manager rescales data automatically for you. Otherwise, in order to avoid rescaling, you can enter row vectors with sum equal to 1. The higher the frequency, the higher the relative attractiveness of that attribute. Professor Kotler calls the matrix above competitive marketing mix matrixand he explains it is used for summarizing the average market perception of the analyzed brands measured along several dimensions of competition. On the other side, continues Kotler, the Marketing Response Vector, column F above, stands for the average relative importance consumers (or your gut feeling) attribute to each of the dimensions. In the data above, for instance, the sample of surveyed consumers attributed the lowest importance to getting a good price deal when buying the product category (5%), and they attributed the highest rating (20%) to Quality and Adv. The sum of the response vector is 1 and the list of variables used for the analysis varies from business to business. 