 Part 1. Introduction to MM4XL
 Part 2. MM4XL Tools
 1. Strategic Tools
 BCG Matrix
 Brand Mapping
 Brand Switch
 Decision Tree
 Forecast Manager
 McKinsey Matrix
 Profile Manager
 Quality Manager
 Risk Analyst
 Risk Analyst Expert in a Few Minutes
 Introduction to Decision Analysis
 Introducing Risk Analyst with an example
 1. How to run Risk Analyst
 2. Simulation Never heard of it
 3. Examples
 4. Functions
 1. Property Functions
 2. Utility Functions
 3. Distribution Functions
 mmBETA (Scale, Shape)
 mmBETAGEN (Scale, Shape, [Optional: Lower], [Optional: Upper])
 mmBINOMIAL (Trials, Successes)
 mmCHI2 (Degrees)
 mmDISCRETE (InputRange, Probabilities)
 mmERF (Mean)
 mmERLANG (Scale, Shape)
 mmEXPON (Mean)
 mmEXTVAL (ModalValue, StDeviation)
 mmGAMMA (Scale, Shape)
 mmGAUSSINV (Mean, Scale)
 mmGEO (Trials)
 mmHYPERGEO (Sample, Defects, BatchSize)
 mmINTUNI (Lower, Upper)
 mmLOGISTIC (Mean, StDeviation)
 mmLOGNORMAL (Mean, StDeviation)
 mmNEGBIN (Failures, Successes)
 mmNORMAL (Mean, StDeviation)
 mmPARETO (Location, ModalValue)
 mmPARETO2 (Location, ModalValue)
 mmPERT (Lower, ModalValue, Upper)
 mmPOISSON (Mean)
 mmRANDBETWEEN (Lower, Upper)
 mmRAYLEIGH (ModalValue)
 mmSTUDENT (Degrees)
 mmTRI (Lower, ModalValue, Upper)
 mmUNIFORM (Lower, Upper)
 mmWEIBULL (Life, Shape)
 Probability functions
 Technicalities
 Sources
 2. Analytical Tools
 Business Formulas
 mmBASS, Bass Diffusion Model
 mmBEI, Brand Equity Index
 mmBEP, BreakEven Point
 mmBEPR, BreakEven Point with Fixed Rate of Return
 mmBUYRATE, Purchase Rate Model
 mmCAGR, Compound Annual Growth
 mmCHIp, Chi Squared Test
 mmCODING, Coding of variables
 1. Customer Satisfaction
 2. Database Functions
 mmDHMS, Number to Time
 mmEI, Evolution Index
 mmEXPECT, Expected values
 3. Forecast Errors
 mmGROWTH
 mmGROWTHBACK
 mmGRP, Gross Rating Points
 mmHERF, Herfindahl Index
 mmINTERPOLE, Linear Interpolation
 mmLEARN, Learning Curve
 mmMSAR, Market Share to Advertising Ratio
 4. Opportunity Index
 5. Performance Ranking
 6. Project Management
 mmPREMIUM, Price Premium
 mmPRESS, Product Performance Index
 7. Price Indexes
 8. Queuing Theory
 mmRANGE
 mmREBUY, Repeat Purchase Rate
 mmREBUYS, Estimated Number of RePurchases
 mmRELATIVE
 mmSAMPLE, Sample Size
 mmSAMPLEMIN, Minimum Sample for Significant Values
 mmSEASON, Seasonality Indexes
 mmSHARE
 mmSIGNIF, Significance Test
 mmVARc, Coefficient of Variation
 Cluster Analysis
 CrossTab
 Descriptive Analyst
 Gravitation Analysis
 Proportion Analyst
 Sample Manager
 Segmentation Tree
 Variation Analyst
 3. Charts and Maps
 mytest
 Version MM4XL
 contribute
 copytest
 css
 emails
 excel market analysis software
 finance
 download dbx
 download eu
 download manual
 download na
 download removed
 finance dbx
 finance eu
 finance manual
 finance na
 finance removed
 NO TITLE
 NO TITLE
 help
 Part 1. Introduction to MM4XL
 Part 2. MM4XL Tools
 1. Strategic Tools
 BCG Matrix
 Brand Mapping
 Brand Switch
 Decision Tree
 Forecast Manager
 McKinsey Matrix
 Profile Manager
 Quality Manager
 Risk Analyst
 1. How to run Risk Analyst
 2. Simulation Never heard of it
 3. Examples
 4. Functions
 1. Property Functions
 2. Utility Functions
 3. Distribution Functions
 mmBETA (Scale, Shape)
 mmBETAGEN (Scale, Shape, [Optional: Lower], [Optional: Upper])
 mmBINOMIAL (Trials, Successes)
 mmCHI2 (Degrees)
 mmDISCRETE (InputRange, Probabilities)
 mmERF (Mean)
 mmERLANG (Scale, Shape)
 mmEXPON (Mean)
 mmEXTVAL (ModalValue, StDeviation)
 mmGAMMA (Scale, Shape)
 mmGAUSSINV (Mean, Scale)
 mmGEO (Trials)
 mmHYPERGEO (Sample, Defects, BatchSize)
 mmINTUNI (Lower, Upper)
 mmLOGISTIC (Mean, StDeviation)
 mmLOGNORMAL (Mean, StDeviation)
 mmNEGBIN (Failures, Successes)
 mmNORMAL (Mean, StDeviation)
 mmPARETO (Location, ModalValue)
 mmPARETO2 (Location, ModalValue)
 mmPERT (Lower, ModalValue, Upper)
 mmPOISSON (Mean)
 mmRANDBETWEEN (Lower, Upper)
 mmRAYLEIGH (ModalValue)
 mmSTUDENT (Degrees)
 mmTRI (Lower, ModalValue, Upper)
 mmUNIFORM (Lower, Upper)
 mmWEIBULL (Life, Shape)
 Probability functions
 Risk Analyst Expert in a Few Minutes
 Introduction to Decision Analysis
 Introducing Risk Analyst with an example
 Technicalities
 Sources
 2. Analytical Tools
 Business Formulas
 1. Customer Satisfaction
 2. Database Functions
 3. Forecast Errors
 4. Opportunity Index
 5. Performance Ranking
 6. Project Management
 7. Price Indexes
 8. Queuing Theory
 mmBASS, Bass Diffusion Model
 mmBEI, Brand Equity Index
 mmBEP, BreakEven Point
 mmBEPR, BreakEven Point with Fixed Rate of Return
 mmBUYRATE, Purchase Rate Model
 mmCAGR, Compound Annual Growth
 mmCHIp, Chi Squared Test
 mmCODING, Coding of variables
 mmDHMS, Number to Time
 mmEI, Evolution Index
 mmEXPECT, Expected values
 mmGROWTH
 mmGROWTHBACK
 mmGRP, Gross Rating Points
 mmHERF, Herfindahl Index
 mmINTERPOLE, Linear Interpolation
 mmLEARN, Learning Curve
 mmMSAR, Market Share to Advertising Ratio
 mmPREMIUM, Price Premium
 mmPRESS, Product Performance Index
 mmRANGE
 mmREBUY, Repeat Purchase Rate
 mmREBUYS, Estimated Number of RePurchases
 mmRELATIVE
 mmSAMPLE, Sample Size
 mmSAMPLEMIN, Minimum Sample for Significant Values
 mmSEASON, Seasonality Indexes
 mmSHARE
 mmSIGNIF, Significance Test
 mmVARc, Coefficient of Variation
 Cluster Analysis
 CrossTab
 Descriptive Analyst
 Gravitation Analysis
 Proportion Analyst
 Sample Manager
 Segmentation Tree
 Variation Analyst
 3. Charts and Maps
 images
 img
 Test pages
 js
 licenses
 lightbox
 logs
 marketing resources
 picture_library
 plesk stat
 press release
 res
 brochures
 copytest
 icons
 links
 proudly_serve
 seminars
 tabs
 tools
 test
 apacheasp
 cgi
 coldfusion
 fcgi
 miva
 perl
 php
 python
 ssi
 treeview_img
 weyou


Part 2. MM4XL Tools > 1. Strategic Tools > Risk Analyst > 2. Simulation Never heard of it > What are probability distribution functions?
Risk Analyst What are probability distribution functions? Probability distribution functions (Pdfs) are statistical devices that marketers can use to model business assumptions. For instance, a common business assumption concerns market share; the statement next year our market share will be in the range 3.5%4.5%, most likely 3.9% is equal to saying next year our market share will be distributed triangularly within Min = 3.5%, Max = 4.5%, and ML = 3.9%. Also, next year market size will be between 85 and 115 Mio. is equivalent to saying next year market size will be normally shaped with mean 100 Mio. and standard deviation 5 Mio. Scenario modelers have found that oldstyle models built using singlebullet variables too often do not represent an acceptable model of real events. For this reason, the old static modeling fashion has lost ground in favor of dynamic modeling. With dymanic modeling, instead of inputting a fixed value for an uncertain variable, say 5% for our future market share, more sophisticated models are built using variables defined within a range of values. When the dynamic model is repeated many times (for example, 1000 times), and each time a new value within the boundaries of the distribution is used for the uncertain variable, we can collect 1000 different simulated observations of our market share. When modeled well, a distribution has a higher probability of including the real value of the uncertain variable than a singlebullet figure has. There can be as many different kinds of assumptions as there are Pdfs, and this may cause some trouble for new users. However, there are many advantages to building models on assumptions defined with Pdfs, and they may justify the moderate learning effort required for applying such devices. It must also be said you do not always need to use spectacularly complex Pdfs to model assumptions. Many useful models are based on fairly simple assumptions. When working with Risk Analyst, values within boundaries can be produced for many different distributions. We will begin by using perhaps the simplest of these functions: =mmRANDBETWEEN(4%, 6%) Copying the formula above in 1000 cells and summarizing the results in, say, 15 classes, yields a chart like the one below (we used the function mmHISTO to summarize the 1000 trials). In Class 1, 69 simulated values between 4% and 4.14% have been aggregated; Class 2 contains 55 values going from above 4.14% to 4.27%, and so on. This chart tells us that the 1000 runs were distributed in more or less equal shares across the 15 classes (more simulation trials would smooth out the differences). That is, each number in the range 4%6% had equal likelihood of being chosen. This assumption of equal probability, however, is not always a reasonable one because it does not permit spreading the risk across the possible outcomes of a distribution. An analyst knowledgeable of their market could assume that the most extreme values close to the tails of the distribution above may have a lower likelihood of occurring. In this case, the 4%6% range could still be used but it should also be specified that a more likely value may occur, for instance, in the 5% range. Repeating the 1000 runs with the formula below produces a new distribution of triangular values: =mmTRI(4%, 5%, 6%) The chart below summarizes the 1000 triangular trials in 10 classes, and was made with the mmHISTO function. There is a difference between the two pictures above. In managerial issues this difference is relevant because it allows you to model the amount of risk linked to an event, and there is a lot of risk in management. For this reason too, there are many distributions available, each used for modeling one or more instances. 